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Predicting the statistics of realistic wave-chaotic scattering systems requires, in addition to random matrix
theory, introduction of system-specific information. This paper investigates experimentally one aspect of
system-specific behavior, namely, the effects of short ray trajectories in wave-chaotic systems open to outside
scattering channels. In particular, we consider ray trajectories of limited length that enter a scattering region
through a channel (port) and subsequently exit through a channel (port). We show that a suitably averaged
value of the impedance can be computed from these trajectories and that this can improve the ability to
describe the statistical properties of the scattering systems. We illustrate and test these points through experi-
ments on a realistic two-port microwave scattering billiard.
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I. INTRODUCTION

Random matrix theory (RMT) has achieved substantial
success at predicting short wavelength statistical properties
of spectra, eigenfunctions, scattering matrices, impedance
matrices, and conductance of wave-chaotic systems [1-5].
By wave-chaotic systems, we mean that the behavior of the
wave system in the small wavelength limit is described by
ray orbit trajectories that are chaotic [6]. In practice, the ex-
perimental applicability of RMT requires consideration of
nonuniversal effects. For example, in the particular case of
scattering, the scattering properties of an open system de-
pend on the coupling between the field within the scattering
region and the asymptotic incoming and outgoing waves
connecting the exterior to the scatterer. For this problem,
researchers have developed methods to incorporate nonuni-
versal coupling and port-specific effects into the analysis of
short wavelength scattering data for systems whose closed
classical counterparts are ray-chaotic [6—14].

Previous comparisons of experimental data to RMT have
often employed ensembles of realizations of the system to
compile statistics. To create such ensembles, researchers
have typically varied the geometrical configuration of the
scattering region and/or taken measurements at several dif-
ferent wavelengths [6,12,13,15]. These variations aim to cre-
ate a set of systems in which none of the nonuniversal sys-
tem details are reproduced from one realization to another,
except for the effects of the port details. Thus, by suitably
accounting for the port details, it was hoped that only uni-
versal RMT properties remained in the ensemble data. How-
ever, there can be problems in practice. For example, in the
case of geometrical configuration variation, researchers typi-
cally move perturbing objects inside a ray-chaotic enclosure
with fixed shape and size [6,12,13], or move one wall of that
enclosure [15], to create an ensemble of systems with vary-
ing details. The problem is that certain walls or other scat-
tering objects of the enclosure remain fixed throughout the
ensemble. Therefore, there may exist relevant ray trajectories
that remain unchanged in many or all realizations of the en-
semble. We term such ray trajectories that leave a port and
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soon return to it (or another port) before ergodically sam-
pling the enclosure “short ray trajectories.”

A similar problem arises for wavelength variation in
which a band of wavelengths is used. Within a wavelength
range, if a ray trajectory length is too short, then the variation
of the phase accumulated by a wave following that trajectory
may not be large enough to be considered random. In such a
case the effects of specific (hence, nonuniversal) short ray
trajectories will survive the ensemble averaging processes
described above. These problems will make systematic, non-
universal contributions to the ensemble data, and thus con-
sideration of short ray trajectories arises naturally in the
semiclassical approach to quantum scattering theory
[4,10,14,16-23]. Such short-ray-trajectory contributions
have been noted before in microwave billiards [12,13,24] or
for quantum transport in chaotic cavities [10,14] and have
either constrained or frustrated previous tests of RMT pre-
dictions.

By a “short ray trajectory” we mean one whose length is
not much longer than several times the characteristic size of
the scattering region, and which enters the scattering region
from a port, bounces (perhaps several times) within the scat-
tering region, and then returns to a port. A “port” is the
region in which there is a connection from the scatterer to the
outside world. For illustrative purposes, in what follows we
consider systems with either one or two ports; as discussed
elsewhere, generalization of our results to more ports is
straightforward [24-27]. Note that the short ray trajectories
we refer to are different from periodic orbits [17,28,29],
which are closed classical trajectories; short ray trajectories,
as defined here, are only important for open systems. Al-
though our explicit considerations in this paper are for bil-
liard systems (i.e., scattering regions that are homogeneous
with perfectly reflecting walls), presumably these effects
may also be present with continuous potentials and are not
limited to billiards.

In this paper, we go beyond the previous treatments to
explicitly include additional nonuniversal effects due to short
ray trajectories. Previous work has examined short ray tra-
jectories in cases where the system and the ports can be
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treated in the semiclassical approximation [18,22] or consid-
ered the effect on eigenfunction correlations due to short ray
trajectories associated with nearby walls [30,31]. The effects
of short ray trajectories on wave scattering properties of cha-
otic systems have been explicitly calculated before in the
case of quantum graphs [32] and for two dimensional bil-
liards [27]. Moreover, microwave billiard experimental work
has extracted a measure of the microwave power that is emit-
ted at a certain point in the billiard and returns to the same
point after following all possible classical trajectories of a
given length [17]. The Poisson Kernel approach can also be
generalized to include short ray trajectories [33] through
measurement of a (statistical) optical S-matrix. None of this
prior work developed a general first-principles deterministic
approach to experimentally analyzing the effect of short ray
trajectories, as we do here. This paper expands on a brief
report of our preliminary results [34]. Our previous work
[34] demonstrated the effect of short trajectories in a one-
port wave-chaotic cavity, and we generalize the short-
trajectory correction to a two-port system in this paper.
Therefore, this generalized correction can be applied to mul-
tiple port cases by similar procedures. Other new ingredients
include detailed examination of the effect of individual short
ray trajectories, and extension to the statistics of other wave
scattering properties.

The outline of this paper is as follows. In Sec. II, we
summarize a theoretical approach for removing short ray tra-
jectories from single-realization data and ensemble-averaged
data of any wave properties of a wave scattering system. A
detailed derivation of the results in Sec. Il is given elsewhere
[27]. In Sec. III, we describe experiments testing the theoret-
ical approach, and we compare the experimental results and
the theory in Sec. IV. These comparisons show that compen-
sation for the effects of short ray trajectories improves the
agreement between RMT-based predictions and measured
statistical properties of ensemble-averaged data and single-
realization data.

While much of our discussion above has emphasized the
goal of uncovering RMT statistics, we also wish to empha-
size that many of our results are also of interest independent
of that goal. In particular, the key step in our approach for
uncovering RMT statistics is that of obtaining a short-
trajectory-based prediction for the average impedance over
frequency and/or configurations (Secs. IV C and IV D), and
we note that this quantity is both experimentally accessible
and of interest in its own right. As another example, in Sec.
IV A we consider the modification of the free-space radiation
impedance arising in configurations when there are only a
few possible short ray trajectories, and this situation applies
directly to many cases where, although reflecting objects are
present, there is also substantial coupling to the outside.

II. REVIEW OF THEORY

In this paper we consider for concreteness an effectively
two dimensional microwave cavity (described in Sec. III) as
the scattering system, and this cavity is connected to the
outside world via one or two single-mode transmission lines
terminated by antennas inside the scattering region, acting as
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ports. The results and techniques should carry over to other
physically different wave systems (e.g., quantum waves,
acoustic waves, etc.) of higher dimension and an arbitrary
number of ports [27]. Ray trajectories within the cavity are
chaotic due to the shape of the cavity.

Previously most researchers focused on the scattering ma-
trix S [7,9,35-41], which specifies the linear relationship be-
tween reflected and incident wave amplitudes in the chan-
nels. We focus on an equivalent quantity, the impedance Z
=Zy(1+58)/(1=5S), because nonuniversal contributions mani-
fest themselves in Z as simple additive corrections [42]. Here
the diagonal matrix Z; gives the characteristic impedance of
the scattering channels, and is measured at chosen reference
planes on the transmission lines as the ratio of the (complex)

transmission line voltage V to current / [time variation exp(
—iwt) is assumed]. Impedance is a meaningful concept for all
scattering wave systems. In linear electromagnetic systems,
it is defined via the phasor generalization of Ohm’s law as

\A/=Zj, and in the case of N channels connected to the scat-
terer, Z is an N X N matrix. A quantum-mechanical quantity
corresponding to the impedance is the reaction matrix, which
is often denoted in the literature as K=—iZ[1,5,25,43-46]. In
what follows our discussion will use language appropriate to
the electromagnetic context and scattering from a microwave
cavity excited by small antennas fed by transmission lines
(the setting for our experiments).

Our goal is to describe the universal RMT aspects of mea-
surement of this impedance matrix (alternatively of the scat-
tering matrix). However, raw measurement of the impedance
have nonuniversal properties because the waves are coupled
to the cavity through the specific geometry of the junction
between the transmission lines and the cavity. In prior work,
the nonuniversal coupling effects were parameterized in
terms of corrections to the impedance Z. The “perfectly
coupled” normalized impedance i, removes nonuniversal
features due to the ports [12,13],

i&y=Rg"*(Z—iXp)RR'"?, (1)

where Zp=Rp+iXy is the radiation impedance, embodying
the nonuniversal port properties. Ry is the real part of Zg, and
Xy is the imaginary part. By “perfectly coupled” we mean
that waves impinging on the cavity are fully transmitted to
the cavity with no prompt reflection. Note that these quanti-
ties are N X N matrices for a system with N ports. Z is the
impedance measured at the previously mentioned reference
planes on the transmission lines when the cavity walls are
removed, so that the outgoing waves launched at the ports
never return to these ports. Equation (1) removes the effect
of the ports in the impedance, so the “perfectly coupled”
normalized impedance i§, of the cavity is all that remains.
We note that Z; is experimentally accessible through a de-
terministic (i.e., nonstatistical) measurement described in
Sec. III.

In Hart et al. [27], it has been proposed that nonuniversal
effects due to the presence of short ray trajectories can be
removed by appropriate modification of the radiation imped-

ance Zg— Zy,,=Zg+ [short trajectory terms], where Z,

avg

=7,(1+8)/(1-S) stands for the “average” impedance. S is
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the average scattering matrix, and the Poisson kernel charac-
terizes the statistical distribution of the scattering matrix S in

terms of S [7,11,36]. More specifically, the averaged imped-
ance is written as
Zowe = Zg + RY2ZRY?, )

avg

where z is the short-trajectory correction. With this modifi-
cation, i&, in Eq. (1) is extended to a perfectly coupled and
short-trajectory-corrected normalized impedance

6= Ry (Z = X Ry (3)
where Z,,,= Ravg+ avg- We define z=p+iy, so R,, and
X,ve can be written as

Ruye=Rp+ Ry PRy, 4)
Xape=Xp+ REXRY. (5)

In the lossless case p and y are the real and imaginary parts
of z; Ry, and X, are the real and imaginary parts of Z,,,,
However, with uniform loss (e.g., due to an imaginary part of
a homogeneous dielectric constant in a microwave cavity),
Ry, and X, are the analytic continuations of the real and
imaginary parts of the lossless Z,,,, as k— k+ik/(2Q), where
0>1 is the quality factor of the closed system, and k de-
notes the wavenumber of a plane wave. These analytic con-
tinuations are no longer purely real (i.e., p, X, Ry, and X,
become complex). The normalized impedance i£ of the lossy
system has a universal distribution which is dependent only
on the ratio k/(2QAk), where Ak is the mean spacing be-
tween modes [5,12,13,27,44,45].
For the system with N ports, the elements of the matrices
z are [27]

Znm = 2 { Pb(n, m)\ b(n,m) eXP[ (lk + K)Lb (n,m)

b(n,m)

- ikLport(n,m)

- iﬂb(n,m)ﬂ-]}' (6)

With p,, ,,+iXy..mn = Z.m> the analytic continuations of p, ,, and
Xn.m are

m= E {_ Pb(n,m) \/Db(n,m) COS[_ (k - iK)Lb(n,m)
b(n,m)
- kLport(n,m) - :Bb(n,m) 77]}’ (7)

= E {_ pb(n,m)\Db(n,m) Sin[_ (k - iK)Lb(n,m)

b(n,m)
- kLport(n,m) - ﬁb(n,m) 77]}7 (8)

where b(n,m) is an index over all classical trajectories which
leave the nth port, bounce B, ,, times, and return to the mth
port, Ly, is the length of the trajectory b(n,m), «
=k/(2Q) is the effective attenuation parameter taking ac-
count of loss, and L, ., is the port-dependent constant
length between the nth port and the mth port. Dy, ,, is a
geometrical factor of the trajectory, and it takes into account
the spreading of the ray tube along its path. This geometrical
factor is a function of the length of each segment of the
trajectory, the angle of incidence of each bounce, and the
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radius of curvature of each wall encountered in that trajec-
tory; it has been assumed that the port radiates isotropically
from a location far from the two-dimensional cavity bound-
aries. py(, ) is the survival probability of the trajectory in the
ensemble and will be discussed subsequently. In the lossless
case (k=0), note that p and y are both real, but they are both
complex in the presence of loss. In arriving at Egs. (7) and
(8) it is assumed that the lateral walls present perfect-metal
boundary conditions, and that foci and caustics are absent.
These assumptions are well satisfied for the cavity shape
used in our experiments.

Note that the sums in Egs. (7) and (8) involve terms of the
form sine and cosine of [(k—ik)Ly, )+ -] which for large
Ly,.m) increase exponentially like exp(kLyy, ). Although in
the experiments we have observed that the parameters py, )
and Dy, ,, decrease exponentially when Ly, ,,) increases, the
sums do not necessarily converge if the loss is too high.
Accordingly, we will use a finite cutoff of the sum and regard
the cutoff result as being asymptotic. In contrast, if instead of
extracting RMT statistics, we regard our goal as approximat-
ing Z,,4=R g +iX 4, then Eq. (2) shows that we only need
to consider z,, ,. Thus the sum involved in the calculation of
z [Eq. (6)] is now over terms that decrease exponentially
with increasing path length as exp(—«Ly,,,)). This sum is
much more likely to converge than the sums in Egs. (7) and
(8).

In practice, when considering either of the sums in Egs.
(6) and (7), or (8), we employ a cutoff by replacing the sums
by which signifies that the sum is now over all trajectories
b(n,m) with lengths up to some maximum length L,
Lymy=Ly, and this is the reason of the name “short-
trajectory correction.” We use pim), (L) (L) el 7(Em)

avg
Rfﬁjg), and X(LM) to indicate the finite length versions of th?)gse
quantities. Combined with the measured radiation imped-
ance, these corrections can be analytically determined by us-
ing the ray-optics of short ray trajectories between the ports
and the fixed walls of the cavity. After understanding the
nonuniversal effects of radiation impedance and short trajec-
tories, we compare the predictions of RMT with the normal-
ized impedance i¢ which contains the remaining features of
longer trajectories and the deviations between a single real-
ization and the ensemble average.

In Sec. 111, in addition to configuration averaging [taken
into account by the quantity p; ., in Egs. (6) and (7) or (8)
(see Sec. IIT)], we will also employ frequency smoothing. In
particular, if f(w) denotes a frequency dependent quantity,
then we take its frequency smoothed counterpart to be the
convolution of f(w) with a Gaussian,

flw) = f flo)g(o-0')do', 9)

where

2

1 —w
P’ p(z(Aw)2>' (10)

Applying the operation (9) to our short-trajectory correction
formulas, Egs. (6) and (7) or (8), with k=w/c, we see that
the summations acquire an additional multiplicative factor,

g(w) =
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Thus, as Ly, increases (i.e., longer trajectories are in-
cluded), the factor [Eq. (11)] eventually becomes small, thus
providing a natural cutoff to the summations in Egs. (6)—(8).

III. EXPERIMENT

We have carried out experimental tests of the short-
trajectory effects using a quasi-two-dimensional microwave
cavity with two different port configurations, a one-port sys-
tem and a two-port system. For the one-port case Z and S are
scalars, while they are 2 X2 matrices in the two-port case.
Microwaves are injected through each antenna attached to a
coaxial transmission line of characteristic impedance Z;, and
the antennas are inserted into the cavity through small holes
(diameters about 1 mm) in the lid, similar to previous setups
[6,25,26,47]). The waves introduced are quasi-two-
dimensional (cavity height 0.8 cm) for frequencies (from 6 to
18 GHz) below the cutoff frequency for higher order modes
(~19 GHz), including about 1070 eigenmodes of the closed
cavity. The quasi-two-dimensional eigenmodes of the closed
system are described by the Helmholtz equation for the
single nonzero component of electric field (E,), and these
solutions can be mapped onto solutions of the Schrédinger
equation for an infinite square well potential of the same
shape [4,48].

The shape of the cavity walls is a symmetry-reduced
“bow-tie billiard” made up of two straight walls and two
circular dispersing walls [48], as shown in the insets of Fig.

ranges from 1.7 to 5.0 cm, putting this billiard system just
into the semiclassical regime. Despite the fact that we are not
deep inside the semiclassical regime, we obtain results in
good agreement with theory (Sec. IV). In the one-port ex-
periments the location of the port is 18.0 cm from wall A and
15.5 cm from wall B. In the two-port experiments we add the
other port at the location 35.6 cm from wall A and 15.6 cm
from wall B. The cavity shape yields chaotic ray trajectories
and has been previously used to examine eigenvalue [49] and
eigenfunction [50] statistics of the closed system in the
crossover from Gaussian orthogonal ensemble (GOE) to
Gaussian unitary ensemble (GUE) statistics as time-reversal
invariance is broken. In addition, this cavity was also used to
study scattering (S-) [25,47], impedance (Z-) [6] and conduc-
tance (G-) [26] statistics.

We use an Agilent PNA Microwave Network Analyzer to
measure the frequency dependence of the complex scattering
matrix S, and compute the corresponding impedance
Z=7x(1+8)/(1-S). The walls are fixed relative to the ports
in all experiments. We experimentally determine the radia-
tion impedance Zp by placing microwave absorbers along all
the side walls of the cavity and measuring the resulting im-
pedance. The absorbers eliminate reflections from the walls,
so this method removes the effect of ray trajectories, leaving
only the effects of the port details. To verify the theory, in
preliminary experiments microwave absorbers are placed
only along specific walls, and we measure and examine spe-
cific contributions of individual walls, or groups of walls, to
the impedance (Secs. IV A and IV B). In another set of ex-
periments, we remove all the absorbers and make measure-
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ment on the empty cavity (Sec. IV C). Finally, we also make
measurement with two perturbers added to the interior of the
cavity (Sec. IV D). Each perturber is a cylindrical piece of
metal with a height similar to that of the cavity, and their
function is to block ray trajectories. The two perturbers are
systematically moved to create 100 different realizations
used to form an ensemble of systems in which the empty-
cavity short trajectories are partially destroyed. In the one-
port experiments the cross sections of the two cylindrical
perturbers are irregularly starlike shapes with the maximum
diameters 7.9 and 9.5 cm. In the two-port experiments the
cross sections are identical circular shapes with diameter 5.1
cm.

IV. RESULTS
A. Individual short ray trajectories

The first experiment tests whether the theory of short-
trajectory corrections can predict the effect of individual ray
trajectories, as well as the aggregate effect of a small number
of ray trajectories, on the impedance. To isolate individual
trajectories, microwave absorbers are employed to cover
some of the cavity walls, and the experiment systematically
includes short ray trajectories involving bounces from ex-
posed walls of the 1/4-bow-tie cavity (see insets of Fig. 1 for
examples), with no perturbers present.

Figure 1 shows comparisons between the measured im-
pedance (Zy,) and the theoretical form (Z%,M)). Here the im-
pedance Zy, is measured from the microwave cavity with
specific walls (W) exposed, where W=B, CD, or BC stands
for one or more of the walls A, B, C, and D shown in the
insets of Fig. 1. We have examined different combinations of
exposed walls and choose some representative cases to show
here. Figures 1(a) and 1(b) are for the cases of one-port
experiments with (a) one wall exposed (wall B) and (b) two
walls exposed (walls C and D), and Figs. 1(c) and 1(d) are
for cases of two-port experiments with (c) one wall exposed
(wall B) and (d) two walls exposed (walls B and C). Notice
that ZEILU?)HZ%M) in this case because there is only one
single realization. Thus, there is no ensemble averaging and
Pbnmy=1 for all trajectories in Eqs. (7) and (8).

Here we focus on the effects of ray trajectories, so we
remove the effect of the port mismatch from the measured
impedance. We term this quantity the impedance correction

Zeor = RI_QI/Z(ZW - ZR)RI_QI/Z’ (12)

and in Fig. 1 the measured data (red and solid) are con-
structed as the resistance correction Re[z,,,] and the reac-
tance correction Im[z,,,.]. In each case, the radiation imped-
ance of the antenna (Zg) is determined by a separate
measurement in which all four walls are covered by the mi-
crowave absorbers [6]. According to Eq. (2), the correspond-
ing theoretical term is

2 = RRPZ — ZR R = pigh? + ix = 2.
(13)

Therefore, the theoretical curves (blue dashed) of the resis-
tance correction and the reactance correction in Fig. 1 are
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FIG. 2. (Color online) Plot of the loss parameter « and the

attenuation parameter k versus frequency inside the empty 1/4-
bow-tie cavity.
Re[z'2] and Im[z'E¥], respectively, and they can be calcu-
lated by using Eq. (6) with the known geometry of the cavity
and port locations, including all short orbits up to the maxi-
mum length L;,=200 cm.

The measured data generally follow the theoretical pre-
dictions quite well, thus verifying that the theory offers a
quantitative prediction of short-trajectory features of the im-
pedance Zy,. In Figs. 1(a) and 1(b), the one-port cases, we
examine the resistance (reactance) correction for the waves
entering and returning from the cavity through the single
port, and the short-trajectory corrections, respectively, in-
clude one trajectory for W=B and a sum over nine trajecto-
ries for W=CD. In Figs. 1(c) and 1(d), the two-port cases, we
examine the resistance (reactance) correction between the
two ports. It corresponds to the elements z,, ; , and zg‘)’ﬁz in
the 2 X2 matrices (z,,, and zgf,’y)), and the short-trajectory
corrections, respectively, include sums over two trajectories
(W=B) and four trajectories (W=BC). For illustration, the
insets of Fig. 1 show some representative short ray trajecto-
ries. Note the direct trajectory between the two ports without
bouncing on walls is treated as a ray trajectory in Egs. (7)
and (8).

For the propagation attenuation, a frequency-dependent
attenuation parameter x(f) is calculated utilizing the previ-
ously measured frequency-dependent loss parameter « [51]
for this cavity. Figure 2 shows the loss parameter a(f) and
the attenuation parameter «(f) for the empty cavity case.
Here « is defined as the ratio of the closed-cavity mode
resonance 3 dB bandwidth to the mean spacing between cav-
ity modes, a=k?/(Ak*Q)=k*A/(47Q), where A is the area
of the cavity (A=0.115 m?), k is the wavenumber, and Q is
the quality factor of the cavity. The mean spacing between
modes varies from 21 MHz at 6 GHz to 6.9 MHz at 18 GHz.
We obtain the loss parameter « from the measured imped-
ance data in the empty cavity case according to the proce-
dures presented in previous work [6,25,51]. In this procedure
the frequency-dependent loss parameter a(f) is determined
by selecting a proper frequency range (e.g., 1.8 GHz), com-
puting the PDF of the “perfectly coupled” normalized im-
pedance i&, [Eq. (1)], and then comparing to different PDFs
that were generated from numerical RMT, using « as a fitting
parameter. Once a(f) is known, the frequency-dependent at-
tenuation parameter «(f) can be calculated because the domi-
nant attenuation comes from losses in the top and bottom
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plates of the cavity, and it is well modeled by assuming that
the waves suffer a spatially uniform propagation loss «
=k/(20)=2ma/(kA).

B. Sources of errors

We propose that there are two major sources of the devia-
tions between the theory and experiment shown in Fig. 1.
The first is that the microwave absorbers do not fully sup-
press the trajectories, and the second arises from the ends of
microwave absorbers that scatter energy back to the ports. To
verify this, the k=w/c dependent impedance corrections data
in Fig. 1 are Fourier transformed to the length domain and
shown in Fig. 3 as &(L),e0=c[FT{z.,}| and &(L)p0n
Ec|FT{zEf)’;4)}, where c is the speed of light, and FT{...} is
the Fourier transformation (k— L). Note that the frequency
range of the Fourier transformation is from 6 to 18 GHz, and
therefore, the resolution in length is 2.5 cm.

In the length domain, the major peaks of the measured
data (red) match the peaks of the theoretical prediction (blue
and dashed), and this verifies that the short-trajectory correc-
tion can describe the major features of the measured imped-
ance in the scattering system. For example, the matched peak
in the theory curve and the data curve in Fig. 3(a) corre-
sponds to the short trajectory from the port to wall B and
returning, shown as the red (vertical) line in the inset of 3(a).
However, there are several minor peaks in the measured data
not present in the theoretical curves. After further examina-
tion of the geometry, the positions of these deviations in Fig.
3 match the lengths of trajectories which are related to the
partially blocked corners of the cavity, or bounce off micro-
wave absorbers with a large incident angle. When the micro-
wave absorbers end at the corners, they produce gaps and
edges, and these defects create weak diffractive short trajec-

tories. For example, the green lines E1 and E2 in the insets in
Figs. 3(a) and 3(b) and E2 in Figs. 3(c) and 3(d) represent the
diffractive short trajectories leaving a port, bouncing off the
partially covered corners, and returning to a port. Their path
lengths match the deviations between the measured data and
the theory as labeled in the figure. Furthermore, the blue line
E3 in the inset in Fig. 3(b) represents the short trajectories
produced by the corner and bounced from one wall.

The other source of error is imperfection of the micro-
wave absorbers that reflect ~—20 dB of the incident signal
for normal incidence, and more for oblique incidence. There-
fore the short trajectories shown as purple lines El in Figs.
3(c) and 3(d) with a large incident angle bring about devia-
tions between the theory and experimental data. These
sources of error due to the ends of absorbers or large incident
angles on absorbers were not included in the short-trajectory
correction. However, these errors will not concern us further
because all microwave absorbers are removed from the cav-
ity in the experiments discussed below.

Besides the errors discussed above, another source of er-
ror is the difficulty in reproducing the antenna geometry with
each measurement as the cavity is opened and re-sealed be-
tween the measurement of the radiation impedance and ex-
posed wall cases. Another concern is multiply reflected tra-
jectories that bounce off of the antennas. However, because
we describe trajectories in terms of the impedance instead of
the scattering parameter, the multiply reflected trajectories
are incorporated in a single impedance term (see [42]). This
is an important advantage of using impedance because it can
take account of the multiple-reflected trajectories in a simple
compact form.

C. Short-trajectory correction in the empty cavity

In the next experiment, an empty 1/4-bow-tie cavity with
no microwave absorbers or perturbers is used. Therefore, all
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possible trajectories between ports are present in this single
realization. Figure 4 shows (a) the real and (b) the imaginary
parts of the first diagonal component of the impedance in a
two-port cavity, corresponding to Re[Z,,] and Im[Z,,]. Fig-
ures 4(c) and 4(d) are for the off-diagonal component of the
impedance, Re[Z,] and Im[Z,,]. The radiation impedance
(black) traces through the center of the fluctuating imped-
ance data of the empty cavity and represents the nonuniver-
sal aspects of the coupling antennas [6,12,13]. Note for the
Z,, case, all signals from port 1 to port 2 are treated as
trajectories, so the off-diagonal radiation impedance is zero.
Also shown in Fig. 4, the theoretical impedance Z“%) [Eqs.
(7) and (8)] include a finite number of short trajectories
(Ly=200 cm, given a total of 584 trajectories for Z(ILIM) and
1088 trajectories for Z%M)). Note that the attenuation param-
eter k(f) is determined through the same procedures as in
Sec. IV A.

In Fig. 4, the theoretical impedance Z"* tracks the main
features of the single-realization measured impedance al-
though there are many sharp deviations between the two sets
of curves. These fluctuations are expected because of the
infinite number of trajectories (Ly,,,)>200 cm) not in-
cluded in the theory.

It is more appropriate to compare the theory to a fre-
quency ensemble of single-realization data. A frequency en-
semble is created by considering frequency smoothed experi-
mental data and comparing it with the smoothed theoretical
prediction for system-specific contributions to the imped-
ance. The frequency smoothing [Egs. (9) and (10)] sup-
presses the impedance fluctuations due to long trajectories
and reveals the features associated with short trajectories.
Figure 5 shows the radiation impedance (black thick), the
smoothed measured impedance Z (red solid) and the
smoothed theoretical impedance Z/#) (blue dashed). The
smoothing is made by a Gaussian smoothing function with

the standard deviation Aw/(27)=240 MHz [Eq. (10)].
Gaussian frequency smoothing inserts an effective low-pass
Gaussian filter on the trajectory length, and thus, the compo-
nents of impedances (Z and Z“»)) in the length domain are

a)
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FIG. 5. (Color online) Plot of the smoothed impedance versus
frequency from 6 to 8 GHz. Shown are, (a) for Z;; and (b) for Z;,,
the real (three upper curves) and the imaginary part (three lower
curves) of the smoothed impedance for the theory (Z(“») with L,
=200 cm, blue dashed) and the experiment (red solid), as well as
the measured (un-smoothed) radiation impedance of the port (Zg,
black thick).
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limited to those with the path length L=<2mc/Aw=125 cm.
Figure 5 shows that the smoothed theory matches the simi-
larly smoothed experimental data very well, therefore, the
short trajectory theory correctly captures the effects of ray
trajectories out to this length region (<125 cm).

When computing the sum of short-trajectory correction
terms in a low loss case like the empty cavity, a problem
appears associated with the finite number of terms (L,
=L,,) in the sum over trajectories. In the theory, to perfectly
reproduce the measured data in the empty cavity requires an
infinite number of correction terms. Therefore, in some fre-
quency regions where the experimental impedance changes
rapidly, the finite sum for the theoretical resistance Re[Z(/#)]
will show values less than zero, which are not physical for a
passive system. For example, see the blue dashed curve in
Fig. 4(a) between 7.3 and 7.4 GHz. This problem is similar
to Gibbs phenomenon in which the sum of a finite number of
terms of the Fourier series has large overshoots near a jump
discontinuity.

Besides verifying that the short-trajectory correction
agrees with system-specific features of the measured data,
we would next like to demonstrate that including short-
trajectory corrections improves the ability to reveal underly-
ing universal statistical properties, even in a single realiza-
tion of the system. We compute the statistical properties of
the real and imaginary part of the normalized impedance
difference

in 500 MHz frequency windows from 6 to 18 GHz for a
single realization of the bow-tie cavity. Random matrix
theory predlcts that the distribution of Re[z( M7 and
Im[z( )] should have zero means, and identical standard de-
viations [5,6,25,26,46,47]. For the one-port case, we use the
normalized impedance difference value directly, and for the
two-port case, we consider the eigenvalues of the 2 X 2 nor-
malized impedance difference matrix.

Figure 6 shows that the RMS errors of statistical param-
eters between the measured data and the theory decrease
upon including more short trajectories in the correction (i.e.,
increasing L,;). We compute the root mean square value of
errors (¢ defined later) for a series of frequency windows
covering the range from 6 to 18 GHz, and the results are
shown versus different short-trajectory corrections with var-
ied maximum lengths L;,. Notice the cases of Lj;=0 denote
the impedance corrected by only the radiation impedance
without any short-trajectory correction. For the normalized
impedance difference z(LM) in each frequency window, the
RMS error ¢, is defined as the root mean square value of
|r=0| or |uy—0| for the difference of the measured mean
from zero, and £, is defined as the root mean square value of
|og—0y|/ (og+0ay) for the difference of standard deviations
between the real part PDF and the imaginary part PDF. Here
mr and uy are respectively the means of Re[z, (Is)] and
Im[z< M7 in each window, and oy and oy are the standard
deviations of Re[zd L)) and Im[z<LM ] in each window. In all
three statistical parameters for both one-port and two-port
cases, the RMS errors { decrease when we correct the data
with more short trajectories. This verifies that using short-
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FIG. 6. (Color online) Plot of the RMS errors for (a) the one-
port experiment and (b) the two-port experiment. Shown are ,, for
the mean of the real part (red circles) and the imaginary part (blue
triangles) of the normalized impedance difference and ¢, for the
difference of standard deviations (green rectangles), versus short-
trajectory corrections with the maximum length from 0 to 200 cm.
Data are taken for a single realization of the bow-tie cavity.

trajectory corrections in a single realization of the wave-
chaotic system can more effectively reveal the universal sta-
tistical properties in the data.

D. Configuration averaging approach

Many efforts to determine universal RMT statistics in ex-
perimental systems are based on a configuration averaging
approach that creates an ensemble average from realizations
with varied configurations. In principle, one can recover the
nonuniversal properties of the system [8,11] via the configu-
ration averaging approach, which is motivated by the “Pois-
son kernel” theory of Mello, Pereyra, and Seligman [7]. Spe-
cifically, ensemble averages of the measured cavity data are
used to remove the system-specific features in each single
realization. Note that in the past, the configuration averaging
approach was explicitly assumed to only remove the effects
of the nonuniversal coupling; however, it was recently gen-
eralized to include the nonuniversal contributions of short
trajectories [33].

Here the experimental results verify that the short-
trajectory correction [Egs. (7) and (8)] can describe nonuni-
versal characteristics of wave-chaotic systems in the configu-
ration ensemble. Two cylindrical pieces of metal are added
as perturbers in the wave-chaotic system that is shown in the
inset of Fig. 7, where the dots represent the ports and the two
circles represent the perturbers. The locations of the two per-
turbers inside the cavity are systematically changed and ac-
curately recorded to produce a set of 100 realizations for the
ensemble [25,26,47]. The scattering matrix S is measured

041114-8



EXPERIMENTAL EXAMINATION OF THE EFFECT OF...

. a) Re[<(zl:3 >]
] 209 == -=Re[Z;,] r20
= = RelZ,,)] r
8 10 > 10
5 . )
z 9 —Im[<Z,>] [0 —~
g |---miz%. )
[~ —Im(Z_,] g
=
S
<
S
=2
6.0 6.5 7.0 7.8 8.0
Frequency (GHz)
b) Re[<Z|z>]
= 5 == -RelZynl [
g “-//k\—Re[ZR‘z
%
S /&/\ Py A M"
g MW
> ——Im[<Z >] -
é 52— - ~Im[z% ;,2] =5 g
—Im[ZR |z] o
DA o p MAAY 0 =
d LY \/\/ v s
9
S
. . . -5
6.0 65 7.0 75 80 &
Frequency (GHz)
(L,
c) Re[Z,]  --- Re[Zl»,]

Resistance (Q)

6.0 6.5 7.0 75 8.0
Frequency (GHz)

FIG. 7. (Color online) Plot of the average impedance versus
frequency from 6 to 8 GHz. Shown are, (a) for Z;; and (b) for Z,,,
the real (three upper curves) and the imaginary part (three lower
curves) of the average impedance for the theory (ZaLU’g) with Ly,
=200 cm, blue dashed) and the configuration average experiment
((Z) red solid), as well as the measured radiation impedance of the
ports (Zg, black thick). Plot (c) shows the real part of the measured
impedance Z;, (black thin) in a single realization comparing with
ngg,)lz and (Z,,). Inset: The wave-chaotic two-dimensional cavity
with perturbers and two ports.

from 6 to 18 GHz, covering roughly 1070 modes of the
closed cavity. After the ensemble average, longer ray trajec-
tories have higher probability of being blocked by the two
perturbers in the 100 realizations; therefore, the main non-
universal contributions are due to shorter ray trajectories. We
compare the measured ensemble averaged impedance (Z)
and the theoretical impedance Z[(lfjg that is calculated from
Egs. (7) and (8) with the maximum trajectory length L,,
=200 cm.

In the configuration ensemble, contrary to the previous
cases without perturbers, we need to introduce a survival
probability py, ) for each ray trajectory term in Eqgs. (7) and
(8). Notice that the two perturbers can block ray trajectories
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and influence their presence in the ensemble realizations.
Thus, we multiply each term in the sum by a weight p;,
equal to the fraction of perturbation configurations in which
the trajectory is not intercepted by the perturbers. The values
of pp,m are between 0 and 1, and a longer ray trajectory
generally has a higher chance of being blocked by perturbers,
and thus it has smaller p;, ).

Note that by recording the positions of perturbers in all
realizations, we are able to do impedance normalization with
short-trajectory correction individually for each realization,
similar to the procedures in the empty cavity case. Here we
introduce pp,, ) as a more general description for the case in
which only the probabilities of survival of particular short
trajectories are known. In addition, we ignore the effect of
newly created trajectories by the perturbers in each specific
realization because they are averaged out in the ensemble.
Note that the attenuation parameter « in the short-trajectory
correction terms [Eqgs. (7) and (8)] is recalculated using the
measured PDFs of impedance in the ensemble case, using
procedures similar to those for the case of the empty cavity.
Due to the presence of two perturbers in the cavity, the at-
tenuation parameter and loss parameter are slightly larger
(~0.1 for @) than in the empty cavity case.

The result of comparisons between the 2 X 2 matrices (Z)
and Zuﬁ”’ of the two-port experiment is shown in Fig. 7. We
have published the result of the one-port experiment in an-
other paper [34]. Here Fig. 7(a) shows the comparison of the
first diagonal component of the impedance, and Fig. 7(b)
shows the comparison of the off-diagonal component. The
measured data (red solid) follow the trend of the radiation
impedance (black thick), and the theory (blue dashed) repro-
duces most of the fluctuations in the data by including only a
modest number of short-trajectory correction terms. Figure
7(c) illustrates the comparison between the measured imped-
ance Z in a single realization and (Z) The strong fluctuations
in the measured impedance Z (black thin) curve have dimin-
ished due to the configuration averaging, and the remaining
fluctuations of the configuration averaged impedance (Z)
away from the radiation impedance are closely tracked by
the theoretical (blue dashed) curve. Note that no wavelength
averaging is used here. The good agreement between the
measured data and the theoretical prediction verifies that the
new theory, Eqs. (7) and (8), predicts the nonuniversal fea-
tures embodied in the ensemble averaged impedance well.

The deviations between the (Z) curves and the Zflﬁ’")
curves in Fig. 7 may come from several effects. The first is
the remaining fluctuations in the (Z) due to the finite number
of reahzatlons We estimate this to be on the order of o,
=0,/ 100~ 1€Q), where oz is the standard deviation of en-
semble averaged impedance (Z) of 100 realizations, and o,
is the standard deviation of the measured impedance Z of a
single realization. This accounts for the remaining sharp fea-
tures in (Z). Another source of errors is that we ignore the
effect of newly created trajectories by the perturbers. Even
though these new trajectory terms are divided by 100 (the
number of realizations), the remaining effects create small
deviations.

We have demonstrated that the ensemble average tech-
nique reveals the nonuniversal properties of the system, and
short-trajectory corrections can help to better describe the
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FIG. 8. (Color online) Plot of probability distributions of (a) the
real part and (b) the imaginary part of the normalized impedance
eigenvalues in the frequency range 6.8 GHz~7.0 GHz, and (c) the
real part and (d) the imaginary part of the normalized impedance in
the frequency range 11.0 GHz~11.2 GHz. The blue (squares)
curve is i&E™ that is normalized with the short-trajectory-corrected
impedance, the green (circles) curve is i&, that is normalized with
the radiation impedance only, and the black curve shows the PDF
generated from numerical RMT.

nonuniversal part than using the radiation impedance alone.
Now we demonstrate the benefit of using the short-trajectory
correction in another respect. That is, when removing the
nonuniversal part to reveal the universal properties, the re-
vealed universal properties have better agreement with the
prediction of RMT if we take account of the short-trajectory
correction. We compare the probability distribution of the
eigenvalues of the normalized impedance £, (normalized by
the radiation impedance [see Eq. (1)]), ié“¥) (normalized by
the short-trajectory-corrected impedance [see Eq. (3)]), and
the PDFs that were generated from numerical RMT
[6,25,51].

Figure 8 shows the PDFs of the normalized impedance
i&, i€ and the corresponding data from numerical RMT.
For i&, in Eq. (1), we take the impedance Z from the 100
realizations and in a frequency range of 200 MHz. Similarly,
for i&™ in Eq. (3), we use the same measured data but
consider short-trajectory correction with Ly,;=200 cm in ad-
dition to the radiation impedance. Here we show two ex-
amples for frequency ranges 6.8—7.0 GHz in Figs. 8(a) and
8(b); and 11.0-11.2 GHz in Figs. 8(c) and 8(d). It should be
noted that in the past such narrow frequency ranges were not
used because short trajectories created strong deviations
from RMT predictions [6,25,47]. Because the normalized
impedance is complex, Figs. 8(a) and 8(c) show the distribu-
tion of the real part of the normalized impedance; (b) and (d)
are the imaginary part. For the numerical RMT data, the loss
parameters (@=0.3 for 6.8-7.0 GHz and @=0.4 for 11.0-
11.2 GHz) were determined by the best matched distribution
with a much wider frequency range (2 GHz). As seen in Fig.
8 the distribution of the normalized impedance has much
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better agreement with the prediction of RMT when we con-
sider the short-trajectory correction up to the trajectory
length of 200 cm.

The deviations of the distribution between the normalized
impedance and the predictions of RMT in Fig. 8 are due to
short trajectories that remain in the ensemble average of the
100 realizations. We have seen that the PDFs of i, and
i&m) approach each other when we use the data in a wider
frequency range. This is because in a wide enough frequency
window the fluctuations in the impedance due to a trajectory
can be compensated (i.e., the required window is
1.8 (GHz)=c/17 (cm) for the shortest trajectory with
Ly,y=15 cm and L, 1y=2 cm). Therefore, we take a 2
GHz frequency window to obtain a universal distribution
that is independent of which normalization methods we use
[Egs. (1) or (3)], and we also determine the loss parameter
from this universal distribution [6,25,51].

Furthermore, the deviations shown in Fig. 8 match the
difference between (Z) and Zg shown in Fig. 7. For example,
in the frequency range 6.8—7.0 GHz the ensemble averaged
impedance (Z;;) is smaller than the radiation impedance
Zg 1 in the real part and larger in the imaginary part, and in
Figs. 8(a) and 8(b) we can see the same bias of the distribu-
tion of the normalized impedance i§, that is normalized with
the radiation impedance only. Therefore, with short-
trajectory corrections, we can better explain the deviations
between the measured ensemble average and the universal
properties predicted by RMT.

E. Uncovering RMT statistics of the scattering matrix

We now test the benefits of the short-trajectory correction
in uncovering universal RMT statistics of the scattering ma-
trix. We find that including short trajectories in the imped-
ance normalization improves our determination of the RMT
statistical properties of the scattering matrix S, given the
same amount of ensemble and frequency averaging. In other
words, we show that the need to resort to wavelength aver-
aging over large numbers of modes is significantly reduced
after including short-trajectory corrections in the impedance
normalization. This section shows the result of the two-port
experiment; the result of the one-port experiment has been
published in our previous work [34]. Here we examine the
phase ¢, of the eigenvalues of the normalized scattering ma-
trix s'“%) because the statistics of ¢, do not change with the
frequency-dependent loss parameter a(f) [25]. The normal-
ized scattering matrix s‘#) is defined as (i&lm)—1)/(i&lm)
+1)=|s"m|e’®s, where the normalized impedance i&"™ is
given by Eq. (3) with corrections by Egs. (7) and (8). Note
for the two-port experiment, we compute the eigenvalues of
the matrix s“4, and ¢, is the phase of the eigenvalues. RMT
predicts that ¢, should have a uniform distribution from 0 to
24 independent of loss [7,8], as verified in previous experi-
ments [25,47].

Figure 9 illustrates the benefits of using short-trajectory-
corrected data to examine the statistical properties of the
scattering matrix. An ensemble of data is created by averag-
ing 100 realizations of the cavity with the two perturbers
present, between 6 and 18 GHz, encompassing about 1070
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FIG. 9. (Color online) Plot of (a) an example probability distri-
bution of the phase ¢, of eigenvalues of the normalized scattering
matrix s“%) from 0~ 2, taken over the 11-11.5 GHz frequency
window inside the 1/4-bow-tie cavity of 100 realizations with per-
turbers. The blue (squares) curve is from data normalized with
Ly;=200 cm, the green (circles) curve is from data normalized with
the radiation impedance only, and the black line shows the perfectly
uniform distribution for comparison. Plot of (b) the average RMS
error of distributions of ¢, where the normalized scattering matrix
stUm) is calculated from impedance normalized with the radiation
impedance only (green circles), with the measured ensemble aver-
aged impedance (pink stars), or with theoretical impedance with
Ly=50 cm (red triangles), 100 cm (orange invert triangles), up to
200 c¢m (blue squares), versus frequency window size from 10 MHz
to 1.0 GHz.

closed-cavity modes. Theoretical short trajectory corrections
are weighted by the survival probability (pj,,,)) Which are
calculated from the known locations of the perturbers. Figure
9(a) shows a representative probability distribution [P(¢;)]
of the phase of eigenvalues of the normalized scattering ma-
trix. The data for the normalized scattering matrix are formed
by taking the measured impedance from each of the 100
realizations and normalizing with the radiation impedances
Z or the theoretical impedance with short-trajectory correc-
tion ngfg,, and these PDFs are computed from the data in a
500 MHz frequency range (11.0-11.5 GHz). In this fre-
quency range, it is clear that the distribution normalized with
short trajectories is significantly closer to a uniform distribu-
tion than the one normalized without short trajectories.

To quantify this improvement, it is convenient to look at
the average root-mean-square (RMS) error with respect to
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the uniform distribution for the two types of normalization
[Fig. 9(b)]. Here the RMS error is defined as

1 10 n 2
RMS =~/—2(—-1], 15
error 102} ( ) ) (15)

where n; is the number of elements in the ith bin in the 10
bins histogram of P(¢,), and (n;) is the mean of n;. There-
fore, when a distribution is more uniform, its RMS error is
smaller. The average RMS error of each frequency window
is averaged over the spectral range from 6 to 18 GHz, and
Fig. 9(b) shows the average RMS error versus the frequency
window sizes from 10 MHz to 1.0 GHz. This figure shows
that the distributions of data are systematically more uniform
as more short trajectories are taken into account in the nor-
malization for a given window size. The average RMS error
of the data normalized without short trajectories [the radia-
tion impedance only (green circles)] has the largest error.
When we include more short trajectories from the maximum
lengths L,;;=50 cm (red triangles) up to L,,=200 cm (blue
squares), the average RMS errors decrease. The improve-
ment is obvious after including short trajectories with Ly,
=50 cm, and it saturates for trajectories with Ly,=100 cm.
For comparison, we also add a curve (pink stars) for the data
normalized by the measured ensemble averaged impedance
(Z) (the red curves in Fig. 7), and it is the most uniform case.
It is observed that the improvement of statistical properties
with short-trajectory corrections is more significant when the
frequency window size is smaller.

V. CONCLUSIONS

A theory for the nonuniversal effects of coupling and
short ray trajectories on scattering wave-chaotic systems has
been tested experimentally on a two-dimensional, wave-
chaotic, electromagnetic cavity with one or two transmission
line channels connecting to the outside. In particular, the
theoretical predictions match the measured data in the cases
of a frequency ensemble in a single realization and the con-
figuration ensemble in the ensemble of 100 realizations. By
removing nonuniversal effects from measured data, we can
reveal underlying universally fluctuating quantities in the
scattering and impedance matrices. These results should be
useful in many fields where similar wave phenomena are of
interest, such as nuclear scattering, atomic physics, quantum
transport in condensed matter systems, electromagnetics,
acoustics, geophysics, etc.
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